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ABSTRACT

When designing vehicle vibration monitoring systems for

aerospace devices, it is common to use well-established models
of vibration features to determine whether failures or defects ex-

ist. Most of the algorithms used for failure detection rely on these

models to detect significant changes during a flight environment.

In actual practice, however, most vehicle vibration monitof.ng

systems are corrupted by high rates of false alarms and missed
detections. Research-conducted at the NASA Ames Research

Center has determined that a major reason for the high rates of
false alarms and missed detections is the numerous sources of

Designing Vehicle Health Monitoring Systems

In this work, the goal is to design effective vehicle health

monitoring systems. The current focus is in assuring that correct

models of system input signals are used for the algorithms and
metrics used for failure detection. This paper explores one aspect

of modeling input signals in such systems, namely, the considera-
tion of statistical variations in the system response variable that is

being monitored. In this light, the following subsections present
•some backgound research on vehicle health monitoring systems,

presents examples of the types of variations encountered in such
systems, and discusses the need to incorporate probabilistic rood-

statistical variations that are not taken into account in the rood- els to account for such variations. Then, the use of probabilistic

eling tassumpuons. In this paper, we address one such source- of/---meth°ds-(-e- g :;-'M°nteCarl°-simulati°n-)-is-expl°redwith-a-simple---
variations, namely, those caused during the design and manufac- example in desig n, and compared to more traditional variation

turing of rotating machinery components that make up aerospace analysis techniques. Next, a lumped parameter dynamic model

systems. We present a novel way of modeling the vibration re-

sponse by including design variations via probabilistic methods.
The results demonstrate initial feasibility of the method, showing

great promise in developing a general methodology for designing

more accurate aerospace vehicle vibration monitoring systems.

is presented for a complex cam-follower system used in this pa-

per, followed by an analysis of vibration data obtained from such

a model. Finally, the Monte Carlo simulation technique is used

to vary a subset of the design parameters. The effect on the vi-

bration response is explored to determine whether.probabilistic
methods can be used to model the inherent variations observed

in the dynamic response of complex systems.

Keywords

Vehicle health monitoring, variation modeling, Monte Carlo

simulation, tolerance design, vibration analysis.

Background and Objective

Failures in rotating machinery for high-risk aerospace ap-

plications are unacceptable when they result in catastrophic ac-
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cidents,andundesirablewhentheyresultinhighmaintenance
costs.In anattempttodetectanyanomalousbehaviorduring

flight for increased safety, most aircraft manufacturers and op-

erators are moving towards installing vehicle health monitoring
systems. Despite the big push to make these systems standard
onboard aircraft, false alarms and missed detections still remain

a serious concern, making their reliability questionable and their

operation costly in practice. One of the main reasons for the high
rate of false alarms and missed failures is the lack of a statisti-

cally significant sample of baseline and failure signatures from

which generalizations can be made. Specifically, since failure

events are rare in such highly-maintained systems, there is no

knowledge of the distribution of responses they could generate.

Recent work at NASA Ames Research Center has demon-

strated that the statistical variations in baseline (healthy) data

as well as faulty data must be accounted for to assure accurate

anomaly detection in aircraft vibration-monitoring systems (Huff
et al., 2000; Huffet ai., 2002a; Tumcr and Huff, 2000; Turner and

Huf, 2001; Huffet al., 2002b). In this work, we address the mis-

match between modeled responses and empirical observations by

developing Sta_tically-accurate models that take variations into

account. The specific objective is to explore probabilistic ap-

proaches to generate a reliable distribution of vibration responses

using lumped-parameter dynamic models. If such an approach
proves feasible, more accurate models of healthy and faulty air-

craft vibration data will be developed and used as signal models

for vibration monitoring systems.

Observed Variations in Vibration Signatures

For rotating machinery, vibration signals are excellent indi-

cators of developing failures and defects in rotating components
such as gears, bearings, shafts, rotors, etc. Each of the rotat-

ing components emanate specific frequencies that appear in the

vibration signals; any changes in the amplitude and frequency

content of these signatures, or the occurrence of sidebands or

additional frequencies, is indicative of potential variations and
--d_fe_s .--Th_-t'ype--g-of -v-_T_tiOn--gZSf-irirere-,xt_ln- tht s-w-ork_m-elude

those that are inherent from the design and manufacturing pro-

cesses (e.g., tolerances, assembly variations, surface roughness
and waviness errors), material defects, cracks, and other point

defects on the rotating components (Turner and Huff, 2001; Huff

et al., 2002a; Turner and Huff, 2000). In this paper, we focus

on variations introduced during design and manufacturing, effec-

-tively-introducing a stochastic nature to the modeling parameters

such as stiffness, mass, and damping.

Examples of such variations have been found throughout

our research. As a first example, Figure 1 shows a schematic

of a helicopter transmission for an OH58 helicopter (Lewicki
and Coy, 1987), as well as a plot of experimental datawe have

collected using a test rig which houses such a transmission box

(Huff et al., 2000). The different lines correspond to four dif-
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Figure1. Baseline Variations in Overall Vibration Levels in a Rotorcraft
Transmission.

ferent assembly instances where the data were collected. Within

each instance, three variables were varied (namely torque, mast

lift and mast bending forces). As shown, the overall vibration

levels (total power) vary significantly depending on the test con-

ditions defined by the four experimental variables (Huff et al.,

2000). As a second example, Figure 2 shows a theoretical plot

of the frequency spectrum from one of the gear systems con-

rained in the helicopter transmission, based on our empirical ob-
servations (Huff et al., 2002b). The geometry of the gear sys-

tem (epicyclic gears) includes four smaller gears (planet gears)
revolving around a larger gear (sun gear) (Smith, 1999). The

exact epicyclic gear mesh frequency appears at frequencies clus-

tered around the theoretical frequency value due to the unequal

spacing between planet gears. The spacing between the smaller

gears is subject to design variations, which can result in different
frequency distributions, which in tuna can invalidate the signal

modeling assumptions ffIuffet al., 2002b).

Probabilistic Variation Analysis in Design

A significant degree of variation is introduced during the de-

sign,-manufacturing_-and-assembly of components thatmake up

aircraft systems. Standard tolerance variation analysis methods

used in design address this variability by predicting the total vari-

ation in the final system (Creveling, 1997). Because we are start-

hag from similar variation sources, this approach will be explored

and extended here to dynamic models of complex systems to pre-
dict the variation in vibration response characteristics.

A simple mechanical assembly is shown in Figure 3, where
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Figure 2. Typical Variation in the Frequency Spectrum due to Design
Variations inEpicyclic Gears.

three rectangular blocks of dimension XI, X2, and X3 are de-

signed and manufactured to fit within the allowable space of
dimension Y Due to the inherently probabilistic nature of the

manufacturing process, each of the dimensions is assigned spe-
cific tolerances based on a distribution set by the designer (ei-

ther based on empirical manufacturing data or process capability

specifications (Creveling, 1997).) Typically, statistical tolerance

analysis techniques are applied to geometric models of such as-

semblies to predict the magnitude and range of the variations in

critical assembly features.

Figure 3 also shows the application of a probabilistic model

(e.g., Monte Carlo (MC) simulation) to perform tolerance anal-

ysis for each manufacturing and design parameter (I-/ammersley

and Handscomb, 1964; Creveling, 1997). Values of each pa-
rameter Xi are drawn from a random distribution, and then com-

---bined-through-sbme--assembly-function-(a-model)-to-detennine-

the corresponding values for the final variable of interest. The

statistical moments are then computed for the resultant values,

which in turn are used to determine the probability distribution

that matches the final assembly variable Y. The following section

illustrates the application of Monte Carlo methods to variation

modeling using a simple design example.

Monte Carlo Methods: Review and Example

Conceptually, Monte Carlo simulation is simple and ele-

gant (Metropolis and Ulam, 1949; Hammersley and Handscomb,
1964). Consider some function

y = f(xl ,x2, ...,Xn) (1)

I......1

Figure 3. Applicationof Statistical Methods to Determine Critical Assem-

bly Tolerances.

where, y is a known function of random variables x],x2, ...,xn.

Each xi has a known random nature, assuming that all the xfs are

statistically independent. The question we wish to answer (or

simulate) is: what is the random nature of y?

To determine the random nature of y, a random sample is

generated for each xi. Using the known function f, y is gen-

erated. Depending on the information needed from the random

nature of y (perhaps a mean ,u and standard deviation or, or the

number of times y exceeds some value out of 1000 trials, etc.)

the value ofy or some sort of frequency count is recorded.
As an example, consider the design of a helical coil spring

to achieve some specific spring constant k. The relation between

the performance k and the design variables is

km

a_G
8D3 N (2)

with d the wire diameter out of which the spring is made, G
the shear modulus of the spring material, D the diameter of the

spring (helix diameter) and N the total number turns or coils of

the spring. As a first pass, a deterministic model with d = 1.5

ram, G = 79 GPa, D = 18.0 mra, and N = 13 turns gives k =

66ON�re.

Of course, the values of d, G, D, and N do not always take

on the same precise values for each spring that is manufactured.

Thus, a more accurate (with regard to how well it represents real-

ity) model would be one which considers the way the variations
of d, G, D, and N cause a variation in k.
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Forcaseswherethefunctionf is simply represented and

smooth enough to provide second derivatives, a low order ap-
proximation for the mean of y can be expressed as below, with

the partial derivatives evaluated at xi =/.ti (Hahn and Shapiro,
1994; McAdams and Wood, 2000):

By = fCux_ ,t4_:,--.,/&,) + _ ,_-
(3)

Similarly, a low order approximation for the variance ofy can be

expressed as:

,=1\ax,)
(4)

Equations (3) and (4) can be applied to Equation (2) to yield:

I 12 /_G 1 2 ,u
+ g_Var(D) + g_Var(N).

(5)

Similarly, for the variance,

Var(k) = (_)2Var(d) + (_)2Var(G)
-3 4 2 _ 4 2

+ (_) Var(D) + (_) Var(N).
(6)

Substituting d = 1.5 ram, G = 79 GPa, and D = 18.0 mm for

the average values lad, biG, /_o, /_ and taking Var(d) = 2.5 x
10 -5 ram, Vat(G) = 6.9 GPa, Vat(D) = I8.6 x 10 -3 mm, and

Vat(N) = 1.87 x 10 -3 turns (Shigley and Mischke, 2001) for

the variations gives/-tk= 660 N/m and Vat(k) = 27,600 N/m.
Translating this into a mechanical tolerance using a common

convenuon (tolerances = 3_x = 3_/_Vd_)) gl--_q_-498-N-/'_.

Using Eqs. (3) and (4) allows designers a starting point to

understand, and compensate for, the effects of variation. Nev-

ertheless, this approximate approach has a number of key short-

comings that become apparent and critical as we explore more

complex systems and the compound effects of different types of

variation. Of critical importance here are that 1) as engineering

models become complex and computational, Eqs. (3) and (4) fail
to provide tractable analysis, and 2) these two equations give us

limited, if at times misleading, information about the probability

distribution function ofy.

Consider the relation y = sin(x). Using Eqs. (3), (4), and
taking x to be a random variable from a standard normal distri-

bution gives fly = 0 and (ry = 1. Such a result may lead a designer
to the notion that y can be modeled as a variable from standard

normal distribution. If this notion was used to make parameter

specifications or expectations of failure, important errors could

occur. Shown in Fig. 4 is a plot of the probability density func-

tion ofy. A key restriction of this theorem is that the mapping of

y=f(x) be one to one; a restriction violated by our simple spring
example (Eisen, 1969).
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Figure 4. The probability density function of y where y = cos(x) and x

is a standard normal variable.

Returning to our spring example, we now use Monte Carlo
simulation to explore the variation in k as a function of the vari-

ations in d, G, D, and N. The histogram in Fig. 5 is gener-

ated performing a Monte Carlo simulation as outlined in the
second paragraph of this section. Based on this simulation,

there were no springs (out of a sample run of 100,000 springs)

that fell below k = 660 - 498 N/m and above k = 660 + 498

N/m (taking the tolerance 498 N/m). This is compared to 270

(.27__r.q__hree -..sigmatolerancing'_,_ implied by the analytic _,'_
approximation. The standard deviation of the Monte Carlo sim-
ulated-springs-- is-l-7.5-N )qn -lead.in g-to-a--3cr -toleran ce-o f-52.-5 .....

N/m. The significant difference between the Monte Carlo sim-

ulated variation and that approximated by Eq. 4 is due to the

non-linearity of Eq. 2. Also, this comparison highlights the po-

tential for engineering errors (in this case likely of a conservative

nature) that would be made based on simple, linearized, analytic

models such as those given by Eqs. 3 and 4.

This short review and comparison of approaches to repre-

senting variation in design highlights some of the advantages of

Monte Carlo simulation. In summary, with the minimal penalty

of some computation lime, Monte Carlo simulation provides

more useful information for the designer. Based on this insight,
we use Monte Carlo simulation to explore how different sources

of variation combine in more complex systems to affect the over-

all response and performance of a system.
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Application: Cam-Follower Vibration Model

A lumped-parameter, seven degree-of-freedom (fourteenth-

order) model of a cam follower is used in this paper as an exam-

- t_ieot'a compi-exnoniinear_system. The d_2f6iiiJw-er-sysiem is-

shown in Figure 6, and a schematic of the model is shown in Fig-

ure 7, adapted from (Grewal and Newcombe, 1988). The param-

eter values for the cam-follower system were taken from (Grewal

andNewcombe, 1988), and are listed in Table 1. The equations
of motion for the model are:

/cO = -c, A0c - 0i) -K, AOc - 0_)

-Cb0c - r_, (7)

McYl = -CvsP] - K_syl - FccosO

+Fp, (8)

Mr.Y2 = -Q(.3)2 -- ))3) -- Kf(y2 - Y3)

Myy3 =

M3y 4 --

M2_5 =

and,

MlY6 =

+Fc cos • - Fp, (9)

Q(_ -y3) +KAy2 - y3)

c4 (-_p4) =K4 #3.=_v4) ..........................

-Fw -Fcb, (10)

c4_3 -y4) +K4(y3-y4)

-C3 (Y4-Ps) - _6(y4-ys), (11)

G(_4 -Ps) +/C3(y4-y_)

-C2 Cy5- Y6) -- K2(y5 - Y6) (12)

C2 (3)5 --3?6) + g2(Y5 -Y6)

-C£% - K_y6, (13)

where 0i is the input position, Rsy and Csy model the damp-
ing and stiffness of the cam drive shaft, Co accounts for friction

losses in the drive shaft bearing, Mc is the mass of the cam itself,

and, Ic is the cam moment of inertia about its center of rotation.

To account for the flexure of the shaft, a shaft stiffness, Kvs, and

a damping, C_s have been added. The offset of the cam follower

from the center of the rotation of the cam is e, Kh accounts for

deformation at the roller-cam interface and Mr is the mass of the

roller. The inertia of the roller is assumed to have a negligible

effect on the rotational dynamics of the system. The mass of

the follower is Mr, with Ky and Cy the structural stiffness and
damping of the follower, respectively. Ccb accounts for the fric-

tion at the interface of the follower and the follower guide, Feb
is the force that results for this friction, and, Fw is the external

lead on the follower. The spring has been modeled as three el-

ements to approximate the distributed mass of the spring. Kb

K2, and K3 are the distributed spring constants. The structural

damping of the spring is approximated as C1, C2 and C3. Mb

3'/2, and M3 are the mass of the spring. The state-space equations

were integrated using a Runge-Kutta integration routine. A sim-

ple harmonic motion (SHM) cam profile with a maximum rise of
.0254m is used. The cam is assumed to rotate at a deterministic

1500RPM (25 Hz). The numerical values for the constants used

in the simulation of cam operation are presented in Table 1.

Figure 6. Schematic of cam-follower modeled

In Figure 8, the velocity and acceleration responses of the

cam follower (from variable Y3 in Figure 7) are shown. The
dashed line shows the idealized follower velocities and accelera-

tions as determined by differentiating the cam profile. The solid

line adds the realism of system mass, stiffness, and the resulting

dynamics. In contrast, Figure 9 shows the velocity and accelera-

tion responses of the cam follower with a profile error of 25/an
and a surface roughness of 2.0/.on added to the cam profile. The

profile error is modeled using a deterministic offset. The pro-

5 Copyright © 2002 by ASME



Figure 7.

system.
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Figure 8. Followervefocity and acceMra_on as a function of cam rotation

with ideal surface smoothness and no profile tolerance on the cam.

in the wear rate of the cam and follower (Rothbart, 1956).

-fi16 error was smaSla_Vd o--E-thb cam su-rface-ff-b--y---the---Eddi_io-fi-_f-a-

sinusoid of tp/3sin(nO). In this case, tp is the profile tolerance

and n was taken to be small compared to the forcing frequency

(1500RPM) and large with respect to the step size of the simu-

lation code. The surface roughness is modeled using a random

number generator and transformation techniques to simulate the

surface roughness.

The addition of these geometric variations cause minimal

:hange in follower velocity as a function of cam angle. However,

he simulations show that a geometric variation in the cam causes

t significantly different acceleration, with a large magnitude, in

he follower. The effective higher frequency and magnitude fol-

ower will cause significantly different vibrations on tile system.

)f particular relevance to our effort to simulate failure modes is

aat an increase in follower acceleration is related to an increase

Probabilistic Cam-Follower Vibration Model

Exploring the vibrational impact of variations in parameters

such as spring stiffness provides a different simulation challenge.

Parameter values of components vary from cam system to cam

system. For example, the spring constant on several cam sys-

tems would be distributed simi/arly to the distribution in Fig-
ure 5. But, in a single cam system, these variations are static in

time. The core research question is whether these non-time vary-

ing parameter variations combine to give time-varying vibration

signals that are falsely indicative of system failure. In many im-

portant cases, this question is simply answered. Above, the static

(with respect to a single cam) variation of the cam profile from

the ideal cause a change in the vibrational behavior of the system.

In general, however, this question remains unanswered.
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Analysis of Cam-Follower Vibration Signatures

Prior to analyzing the effect of design variations on the vi-

brational response, the vibration signature needs to be under-

stood to decide on a possible set of features (vibration metrics)

that will be used to monitor system performance and indicate the

occurrence of failures. A small sample of the simulated cam-

follower vibration responses is shown in Figures 8 and 9 for half

a revolution (for an ideal cam and a cam with profile errors, re-
spectively). 12 revolutions of these signals are used to analyze

the frequency content, with a sampling frequency of 10000Hz
(Nyquist frequency cut-off is 5000Hz.)

The frequency content of these signals is shown in Fig-

ure 10. The first plot shows the entire set of frequencies com-

puted from the two signals. Based on a careful analysis, the only

difference in the frequency content due to the addition of pro-

file and surface errors manifests itself in the higher frequency

range. The second plot shows a zoomed-in portion of the higher-

frequency range where the difference due to the two signals can

be seen clearly. In g6neral, the addition of the profile and sur-

PSD

PSO

X 10s

12

to

Comparison oI PSDs for _deaJ Cam Prof_e vs. C._m Profile with Errons

5O 100 150 29O

Frequency in H_'tz

x 106 _ml_ris_n of PSOs fo_ Ideil _m PrOfile v'_. "Cam Profile wilh Errors

15

IO'l : I

190 195 2(0 205 210 215 220 225 230

grequer_y in HOrlZ ...............

Figure 10. Comparison of Power Spectral Densities for an Ideal Cam

Profile vs. a Cam with profile tolerance and surface roughness added
(high-frequency range zoomed-in).

face errors introduces frequencies in the noise range, as well as

increasing the overall power levels.

Many possibilities exist for selecting a feature set for the

purposes of monitoring changes in the vibration signatures
(Smith, 1999; Lewicki and Coy, 1987; Turner and Huff, 2001).

In this paper, we first focus on the most obvious and the most

standard vibration monitoring feature, namely, the global mea-

sure of vibration levels. This measure can be computed as the

area under the power spectral density plot in the frequency do-

7 Copyright © 2002 by ASME



main(equivalenttothevariancein thetimedomainbyParse-
val'stheorem.)Becausemostofthechangesdueto the addition

of surface errors to the cam profile are observed in the higher-

frequency range shown in Figure 10 (_ 177Hz to 250Hz), we

select the total power in this range the vibratin metric of inter-

est for this study. Many other metrics are available and will be
expIored in the future.

Anlaysis of the Impact of Design Variations

Next, the signals defined and analyzed in the previous sub-
section are varied using the Monte Carlo simulation method. In

this case, both the signal from the ideal cam and from the cam
with profile and surface errors are used to determine whether a

random variation in the spring constant K (see model in Fig-
ure 7), similar to the helical spring explored in a previous sec-
tion, will result in significant variations in the vibration metric of

interest (e.g., total power in the high-frequency range).

The spring constant tolerance model is developed by anal-

ogy with the earlier example in the paper. The spring constant
/fieain is taken as 21,000 N/m with a standard deviation of 2.65%

(660/17.5 = 0.0265) or 567 N/re. Recall that the spring that we
explored before had a mean of 660 N/m and a standard devia-

tion of 17.5 N/re. The spring was chosen as the element to vary
because we can develop a reasonable tolerance model for this el-

ement (unlike the damping), and it is likely to have larger affect

on our vibrational response then one of other parameters.

N = 200 number of trials are generated using the Monte

Carlo simulation method (minimum number of trials required
(Creveling, 1997)). A plot of the selected vibration metric is

shown in Figure 11 for the case of the ideal cam profile and the
cam profile with errors. As observed, the overall vibration levels

and the variance in these levels are significantly higher for the
case of cam profile with errors.

The statistics (mean, standard deviation, skewness, kurtosis)

of the vibration data generated using MC simulation are summa-

rized in Table 2 for all of the frequenepcy rang_es for comparison.

Using the high-frequency range once again, the ideal profile case
results in a mean value of 62, 967.00 and a standard deviation of

83.98, resulting in a tolerance of 251.95. The error profile case

results in a mean value of 69,250.00 and a standard deviation

of 3,468.50, resulting in a tolerance of 10,404.00 for the overall
vibration metric. Recall from the earlier review of Monte Carlo

techniques that the standard approach to computing tolerances

(using Equations 3 and 4) based on the complex mathematical

relationship between the design parameters (d, G, D, and N) and
the vibration response (sum of the total power in Y3) would have

been intractable and highly simplistic 0inearized.) This com-

putational approach provides the vehicle monitoring system de-
signer with the possible ranges of acceptable values of the vi-

bration monitoring metric, based on the random variation in the

selected subset of design parameters. Figure !2 shows the sta-
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Figure 11. Total Power in the High-Frequency range for an Ideal Cam

vs. a Camwith profile tolerance and surface roughness added.

tistical distribution of the high-frequency vibration power values
for both cases (total number bins is 20.) As observed, the vibra-
tion metrics for both cases follow a normal distribution. How-

ever, the spread in the vibration metric computed from the case

of cam profile with errors is much larger in value than the ideal
cam profile case.

Discussion

Several observations can be made based on these analysis re-
sults. First, in addition to the mean levels of the vibration metric

being larger, the variance in the value of the vibration metric due

to the variation of the spring constant is significantly larger in the

case of the cam with surface errors. This implies a greater im-

pact of design variations on the vibration response of the (more
realistic) cam with profile and surface errors. As a result, the

models used for vehicle health monitoring systems not only have
to take the variation in the design parameters into account, but

also model the profile and surface errors more accurately, which
is nonexistent from current models.

Second, the effect of the random variation in the spring con-

stant (K) variable on the vibration metric is quite significant, as
observed by the high variance value. The mathematical relation-

ship describing the vibration metric selected in this study would

have to be modified to add the expected variation which has prop-

agated through the complex dynamic system, and resulted in the
computed variation. In addition, the values of the metric within

the computed variation range will have to be stored to assure the

8 Copyright © 2002 by ASME



Table2. Statistics of Total Power Changes due to MC simulation.

I Idc_Pro_c ErrorProfile IFreqR,.'mgc Mean St De,,, Skew K_r_ Mean StDcv Skew Kur_

Total [ 231670.00 82.51 -0.93

Low-Freq / 163880.00 0.54 -0.06High-Freq 62967.00 83.98 -0.22

3.35 2.49930.00

3.07 164-120.00

3.35 69250.00

3,168.4 , 0.25 3.15

143.27 -0.21 3.03

3468.5 -0.25 3. t8

elimination of false alarms: in other words, training of the data

must include the variation that has propagated through the sys-

tem, so that anomalies are not identified incorrectly.

Let us revisit the situation described in Figure 1, where

the four experimental factors (mast lift, mast bend, torque, and

assembly) resulted in significant differences in vibration lev-

els. The question those empirical observations brought up was

whether any of these vibration levels were "acceptable". A pro-

bilistic approach as described in this paper will enable the de-

signer to set the limits of the vibration levels according to the

mathematical model of the OH58 test rig vibrations, which will

then identify which of the test conditions fall within the accept-
able limits of yariation. A similar approach can be followed for

the situation described in Figure 2, where the vibration metric

would be the power level at each of the frequencies, and angular

variations in the placement of the planet gears can be propagated
through the system to determine further effects.

Conclusions and Future Work

This paper addresses the problem of incorrect modeling as-

sumptions made when designing vehicle health monitoring sys-
tems, resulting in high rates of false alarms and missed detec-

tions. The specific problem that was addressed is the necessity

of including the effect of statistical variations introduced during
design and manufacturing of rotating machinery, components that

make up most aerospace systems. The propagation of such sig-
nificant variations through the system and theft effect on the final

monitoring metric of interest is typically unknown, invalidating
certain signal modeling assumptions. In _la-i_-paper, pT6b_b_li_-

tic methods (e.g., Monte Carlo simulation) are used to describe

the nature of the variations in the system response due to varia-

tions in a subset of design parameters. The results show signifi-

cant variation that must be taken into account using probabilistic
models.

The paper presents an initial feasibility of enhancing de-

terministic dynamic models of complex systems by combining

them with probabilistic models. Only a subset of design parame-

ters (those describing the spring constant K) were considered in

this paper. For a more thorough analysis, we need to run a full

MC simulation on all the parameters and then do a sensitivity
analysis. Final/y, the example uses a cam-follower system. Fu-

ture work will attack the problem of high-risk aerospace systems

with much more complex system models. Ongoing work focuses

on developing finite difference models of such complex systems,

which will be used to determine whether and how the design and

manufacturing variations propagate through the system, and how

they can be represented in the signal modeling assumptions for

vehicle health monitoring systems.
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